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This study investigates the two-way coupling effects of finite-size solid spherical
particles on decaying isotropic turbulence using direct numerical simulation with an
immersed boundary method. We fully resolve all the relevant scales of turbulence
around freely moving particles of the Taylor length-scale size, 1.2 � d/λ� 2.6. The
particle diameter and Stokes number in terms of Kolmogorov length- and time
scales are 16 � d/η � 35 and 38 � τp/τk � 178, respectively, at the time the particles
are released in the flow. The particles mass fraction range is 0.026 � φm � 1.0,
corresponding to a volume fraction of 0.01 � φv � 0.1 and density ratio of
2.56 � ρp/ρf � 10. The maximum number of dispersed particles is 6400 for φv =0.1.
The typical particle Reynolds number is of O(10). The effects of the particles on the
temporal development of turbulence kinetic energy E(t), its dissipation rate (t), its
two-way coupling rate of change Ψp(t) and frequency spectra E(ω) are discussed.

In contrast to particles with d < η, the effect of the particles in this study, with
d > η, is that E(t) is always smaller than that of the single-phase flow. In addition,
Ψp(t) is always positive for particles with d >η, whereas it can be positive or negative
for particles with d <η.

1. Introduction
Simulating dispersed particles (solid particles, liquid droplets or gaseous bubbles) in
a turbulent flow as point particles is justified if the diameter of the particle d is much
smaller than the Kolmogorov length scale η and the Reynolds number of the particle
Rep < 1, as was demonstrated by Elghobashi & Truesdell (1992) in comparing their
direct numerical simulation (DNS) results with the experimental data of Snyder &
Lumley (1971) for the dispersion of solid particles in decaying isotropic turbulence (i.e.
one-way coupling). The above two conditions permit using the equation of particle
motion (Maxey & Riley 1983) with the Stokes drag to calculate the instantaneous
particle velocity. The point particle approach was also used in DNS to study the
effects of the particles on turbulence (two-way coupling) by Elghobashi & Truesdell
(1993) and Ferrante & Elghobashi (2003). If the above two conditions, d � η and
Rep < 1, are not satisfied, then it is not possible to derive an exact analytical equation
describing the particle motion in a turbulent flow (Lumley 1978), and consequently
the point particle approach is not justified.

† Email address for correspondence: selghoba@uci.edu
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The only accurate approach to simulate the motion of particles whose diameter
d >η (hereinafter referred to as finite-size particles) in a turbulent flow is to
numerically resolve the fluid motion around each individual moving particle. Few
studies that resolve the flow around freely moving particles (or bubbles) in a turbulent
flow have been recently published: Ten Cate et al. (2004), Lu, Fernandez & Tryggvason
(2005), Zhang & Prosperetti (2005) and Uhlmann (2005). A brief description of
the methods used in these four studies is given below. Ten Cate et al. (2004)
performed fully resolved simulations of spherical particles suspended in a forced
isotropic turbulence via a lattice-Boltzmann (LB) scheme. They used the LB scheme
developed by Eggels & Somers (1995), in which the fluid is modelled as a number
of particles, each of a dimensionless mass density ni that propagates with discrete
velocities ci, i =1, M , at discrete time steps �t on a uniform grid (lattice) according
to the lattice-Boltzmann equation:

ni(x + ci�t, t + �t) = ni(x, t) + Γi(n), (1.1)

where Γi is the collision operator that depends on all masses, i.e. the vector n, involved
in the collision. The sphere surface was represented by a set of control points, placed
at the sphere’s surface, evenly spaced at a distance apart somewhat smaller than the
grid spacing. The surface velocity was given by the sum of the translational and
rotational velocity components. A body force was applied to the fluid domain such
that the fluid velocity near the surface of the solid particle is equal to the velocity of
the solid surface, thus satisfying the no-slip boundary condition. A spectral forcing
scheme was applied to maintain the turbulent conditions at Reλ =61. The number of
particles ranged from 773 to 3868. The volume fraction of particles ranged between
2 % and 10 %. The ratio of particle to fluid density varied between 1.15 and 1.73. A
lubrication force was used to account for subgrid hydrodynamic interaction between
approaching particles. The energy spectra, E(k), in the wavenumber space showed
that the particles generate fluid motion at length scales of the order of the particle
size. This results in a strong increase in the rate of energy dissipation at these length
scales and a decrease of kinetic energy at larger length scales. However, the spectra
of both the turbulence energy, E(k), and its dissipation rate, ε(k), in figure 6 of
Ten Cate et al. (2004), show unphysical oscillations at wavenumbers larger than those
corresponding to the particle diameter. Ten Cate et al. (2004) stated that the effects
of these oscillations on the total energy and dissipation rate are negligible. We will
explain later in § 3.3.4 the details of how these oscillations are generated and describe
an alternative approach to compute the energy spectra in the frequency space rather
than the wavenumber space.

Lu et al. (2005) simulated the flow around 16 deformable bubbles freely moving in a
‘minimum turbulent channel’. They solved the Navier–Stokes equations by a second-
order accurate projection method using centred differences on a fixed staggered
grid. The bubble surface (front) was explicitly marked by connected marker points
that form an unstructured triangular grid. The front points were advected by the
flow velocity, interpolated from the fixed grid. The front was used to update the
density and viscosity at each grid point and to find the surface tension. As the front
deforms, surface markers were dynamically added and deleted. The surface tension
was represented by a distribution of singularities (δ functions) located at the front.
To transfer the front singularities to the fixed grid, the δ functions were approximated
by smoother functions with a compact support on the fixed grid.

Zhang & Prosperetti (2005) developed a numerical method (named Physalis) to
resolve the flow around spherical particles freely moving in an incompressible flow.
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The basic idea of Physalis is that, due to the no-slip condition, in the reference frame
of each particle, the fluid velocity near the particle boundary is very small so that
the Stokes equations constitute an excellent approximation to the full Navier–Stokes
equations. The general analytical solution of the Stokes equations can then be used
to ‘transfer’ the no-slip condition from the particle surface to the adjacent grid nodes.
In this way, the geometric complexity arising from the irregular relation between the
particle boundary and the underlying mesh is avoided and fast solvers can be used. The
method has been validated by a detailed comparison with spectral solutions for the
flow past a sphere at Reynolds numbers of 50 and 100. Zhang & Prosperetti (2005)
applied their method to a decaying isotropic turbulence containing 100 spherical
particles, randomly positioned. The cubical domain consisted of 643 mesh points and
the initial Reλ = 29. The ratio of particle to fluid density is ρp/ρf = 1.02, where ρf

is the density of the carrier fluid. The volume fraction of the particles is φv =0.1.
The particle diameter is d/η0 = 8.32, where η0 was the initial Kolmogorov length
scale. The Physalis method is quite accurate because it uses the analytical solution
of the Stokes equations in the vicinity of the spherical particle surface and thus the
no-slip condition is satisfied exactly at the surface. However, Physalis is limited to
non-deformable spherical particles. Simulating the deformation of the particle surface
would be necessary in cases of particle or droplet combustion or the motion of
large bubbles. Uhlmann (2005) used the immersed boundary (IB) method, which was
originally developed by Peskin (1972, 2002), to solve the incompressible continuity
and Navier–Stokes equations for flows around flexible membranes, e.g. the flow in
the human heart. The IB formulation (Peskin 2002) involves both Eulerian and
Lagrangian variables linked by the Dirac delta function. Spatial discretization of
the governing fluid equations is based on a fixed Cartesian mesh for the Eulerian
variables and a moving curvilinear mesh for the Lagrangian variables. The two
types of variables are linked by interaction equations that involve a smoothed
approximation to the Dirac delta function. Eulerian/Lagrangian identities govern
the transfer of data from one mesh to the other. For example, in the case of a freely
moving solid particle, a singular force is applied at prescribed Lagrangian points
(distributed evenly on the moving sphere surface; figure 1) to the Navier–Stokes
equations via a delta function. The regularized three-point delta function proposed
by Roma, Peskin & Berger (1999) is essential to the efficiency of this method.
A schematic of the Eulerian/Lagrangian mesh details and δ function is given in
figure 2.

Uhlmann (2005) improved the IB method by minimizing the numerical oscillations
resulting from the interaction forces between the fluid and the immersed solid body.
He also presented simulations of the sedimentation of 2000 identical spherical particles
under the effect of gravity, with a terminal Reynolds number ≈ 400, in a periodic box.
More recently, Uhlmann (2008) applied the IB method to the two-way interactions
between 4096 spherical particles and a fully developed turbulent channel flow using a
uniform Cartesian mesh with 2048 × 513 × 1024 grid points. The volume fraction of
the particles is 4.2 × 10−3 and the particle diameter is about 10 viscous wall units. At
present, the DNS study of Uhlmann (2008) has the largest number of fully resolved
moving particles in a turbulent flow.

We adopt a modified version of the IB method of Uhlmann (2005) to study the
two-way coupling effects of finite-size particles in a decaying isotropic turbulence.
We fully resolve all the relevant scales of turbulence around freely moving spherical
particles of the Taylor length-scale size, 1.2 � d/λ� 2.6. The particle diameter and
Stokes number in terms of Kolmogorov length- and time-scales are 16 � d/η � 35 and
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Figure 1. Pressure distribution and velocity vectors around a spherical solid particle in
isotropic turbulence. Only a small region of the middle plane of the computational domain
is shown. The black dots represent the Lagrangian points on the sphere surface where the
two-way coupling force is imparted on the surrounding fluid.

δ function

Figure 2. Eulerian grid points (triangles) influenced by the force at the Lagrangian grid point
(white circle) of the particle spherical surface (black line). Three-dimensional, three-point δ
function by Roma et al. (1999).

38 � τp/τk � 178, respectively, at the time the particles are released in the flow. The
particles mass fraction range is 0.026 � φm � 1.0, corresponding to a volume fraction
of 0.01 � φv � 0.1 and density ratio of 2.56 � ρp/ρf � 10. The maximum number of
dispersed particles is 6400 for φv = 0.1.
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Figure 3. Temporal development of the energy spectrum, E(k, t), as a result of forcing in
the physical space to produce stationary turbulence, dE/dt = 0. The numbers next to the line
symbols indicate dimensionless time.

It should be mentioned that other studies have used forced isotropic turbulence
to maintain a statistically stationary turbulence at higher values of Reynolds number,
Reλ, for a given grid resolution, than those in decaying turbulence. Forcing isotropic
turbulence, whether spectrally at the small wave numbers or in the physical space,
is an appropriate approach to study the small-scale motion (large wavenumbers)
in single-phase flows or the dispersion of particles (one-way coupling) in particle-
laden turbulent flows. However, it is certainly incorrect to use any forcing to study
the two-way coupling effects of dispersed particles on turbulence for the following
reasons:

(a) If forcing is performed in the spectral space by adding energy at the smallest
wavenumber, the amplitude of the temporal variation of the turbulence kinetic energy
(TKE), E(t), in the forced simulations of single-phase isotropic turbulence can be as
large as 50 % of the time-mean value of E(t) (see figure 6 of Rosales & Meneveau
2005). This large fluctuation of E(t) due to forcing is of the order of the modulation
of E(t) by the two-way coupling effects of the dispersed particles, and thus it is
impossible to accurately quantify the true effects of the two-way coupling.

(b) If forcing is performed in the physical space, for example, according to

Dui/Dt = · · · +
ui ε(t)

2E(t)
,

which is equivalent to

DE/Dt = −ε(t) +
〈u2

i 〉 ε(t)

2E(t)
= −ε(t) + ε(t) = 0,

the turbulence energy E(t) becomes invariant, where ε(t) is the dissipation rate of E(t).
However, this stationarity of E(t) is achieved by continually modifying the spectrum
E(k, t) at all wavenumbers to maintain

∫
E(k) dk = constant as shown in figure 3.
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It is seen that as time increases, E(k) is reduced at medium/large wavenumbers,
whereas E(k) is increased at small wavenumbers. This redistribution of E(k) opposes
the action of the particles as discussed below.

(c) Although the direct interaction of small particles (d <η) with turbulence starts
at length scales of the order of particle size, i.e. large wavenumbers, the triadic
interactions (Elghobashi & Truesdell 1993; Ferrante & Elghobashi 2003) between
these wave numbers and the small wavenumbers (large sales) are directly affected by
any forcing mechanism, whether spectrally at the small wavenumbers or physically
over all wavenumbers. The modification of the spectral transfer of energy, T (k), at
the small wavenumbers by the particles has been clearly demonstrated (Elghobashi &
Truesdell 1993; Ferrante & Elghobashi 2003). Thus, no clear distinction can be made
between the effects of the two opposing mechanisms: the natural reduction of E(k)
at small wavenumbers by the particles, and the artificial supply of E(k) at the same
wavenumbers as shown in figure 3.

Section 2 describes the governing equations and the numerical method. The DNS
results are discussed in § 3. The conclusions are presented in § 4.

2. Mathematical description
2.1. Governing equations

The governing equations for the incompressible isotropic turbulent flow are the
Navier–Stokes equations

∂ui

∂t
+

∂(uiuj )

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ fi, (2.1)

and the continuity equation

∂ui

∂xi

= 0, (2.2)

where i = 1, 2, 3 for the three coordinate directions x1, x2 and x3. Here fi is the net
force, per unit mass of fluid, in the xi direction at the Eulerian mesh points that are
directly affected by the particle force through the three-point δ function (figure 2).
Note that (2.1) and (2.2) are written in non-dimensional form, and throughout the
paper all variables are dimensionless except those with superscript tilde (˜).

2.2. Numerical method

Our DNS method solves the unsteady three-dimensional Navier–Stokes and
continuity equations ((2.1) and (2.2)) throughout the whole computational domain
D, including the interior of the dispersed particles. These governing equations are
discretized in space in an Eularian framework using a second-order finite-difference
scheme on a uniform staggered mesh of (256)3 grid points. This grid allows an
initial microscale Reynolds number Reλ0 = 75. Time integration was performed via
the Adams–Bashforth scheme with a time step �t =�x/2, where �x is the grid
spacing. The simulations were stopped after 10 240 time steps at non-dimensional
time t = 20. Pressure was treated implicitly and was obtained by solving the Poisson
equation in finite-difference form using a combination of a two-dimensional fast
Fourier transform (FFT) in the x1x2 plane, and Gauss elimination in the x3 direction.
Periodic boundary conditions were imposed in the three directions. The particles were
released with a random distribution in the computational domain at time t =1, when
the skewness of the velocity derivative Su has reached the value −0.50, indicating
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Figure 4. Temporal development of the skewness, Su, of the velocity derivative in the DNS
of decaying isotropic turbulence.

an established nonlinear transfer of turbulence kinetic energy across the spectrum
(figure 4). We have also computed the skewness, S(r, t), of the velocity increments,
using the third-order structure function, DLLL(r, t) = 〈[u1(x1 + e1r, t) − u1(x1, t)]

3〉, and
second-order structure function, DLL(r, t) = 〈[u1(x1 + e1r, t) − u1(x1, t)]

2〉, for single-
phase isotropic turbulence during the time period t = 0 to t = 6 according to

S(r, t) = DLLL(r, t)/DLL(r, t)3/2, (2.3)

where r ≈ particle diameter d = 1.2λ=16.4η. Figure 5 shows that −S(d, t) increases
from zero to a peak of about 0.33 at t = 0.5, then it remains fairly stationary at an
average value of about 0.3 until t = 6 (about two eddy turnover times), indicating
the non-Gaussian nonlinearity of the velocity field at the scales of particle size.
In the particle-laden cases, the particles are released into the flow at t = 1. It
should be noted that for isotropic turbulence at a much higher Reλ than in our
present flow, the Kolmogorov theory predicts for the inertial range, a value of
S(r) = −(4/5)/(2.1)3/2 ≈ −0.26 whose magnitude is slightly lower than ours.

The time t = 1 will be referred to hereinafter as the ‘injection time’, tinj . The initial
velocity at tinj of each particle was set equal to the instantaneous fluid velocity at the
particle centre. The linear and angular velocities of the particle were computed via
(2.19) and (2.20), and were used to calculate the instantaneous particle trajectories.
The motion of the particles was fully coupled to that of the fluid. This coupling
method was developed by Ferrante & Elghobashi (2007) and is a modified version of
the IB method proposed by Uhlmann (2005). The details of the numerical approach is
given in the following subsections. The main differences between the current method
and that of Uhlmann (2005) are as follows:

(a) Our time integration is performed using the second-order Adams–Bashforth
scheme (2.6), instead of a third-order Runge–Kutta scheme used by Uhlmann (2005);
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Figure 5. Skewness, −S(d, t), of the velocity increments in single-phase isotropic turbulence
at scales equal to the particle diameter.

(b) The pressure-gradient term of the time level n is not included in (2.6), in
contrast to (12a) of Uhlmann (2005);

(c) The two-way coupling force is directly applied to the velocity field according
to (2.16) without solving the Helmholtz equation, in contrast to (12e) of Uhlmann
(2005);

(d) At each time step, only one Poisson equation (2.17) for the pressure is solved,
in contrast to the method of Uhlmann (2005), who solved one Poisson equation and
one vectorial (three scalar) Helmholtz equation for each of the three Runge–Kutta
steps, (12e) and (12f ).

2.2.1. DNS of the carrier flow

The fluid acceleration, RUi , due to the inertia and viscous forces, is defined as

RUi = −∂j (uiuj ) + ν∂j∂jui. (2.4)

Equation (2.1) is recast in a compact form as

∂tui = −∂ip + RUi + fi. (2.5)

The following five steps constitute the numerical algorithm of the flow solver:
(a) Time integration of (2.5), without the pressure gradient and force fi , is

performed using the Adams–Bashforth scheme:

u∗
i − un

i

�t
=

3

2
RUn

i − 1

2
RUn−1

i , (2.6)

where u∗
i is an approximate value of un+1

i before applying the forcing (2.16) and the
pressure correction (2.18).
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(b) The instantaneous force components fi in the xi directions are computed via
the next three sub-steps:

U ∗
i

(
X (m)

l

)
=

∑
x∈D

u∗
i (x) δh

(
x − X (m)

l

)
h3, ∀ l, m, (2.7)

Fi

(
X (m)

l

)
=

U
(d)
i

(
X (m)

l

)
− U ∗

i

(
X (m)

l

)
�t

, ∀ l, m, (2.8)

fi(x) =

Np∑
m=1

NL∑
l=1

Fi

(
X (m)

l

)
δh

(
x − X (m)

l

)
�V

(m)
l , (2.9)

where the lower-case letters denote quantities computed at the Eulerian mesh points
x, and the upper-case letters denote quantities computed at the Lagrangian force
points X (m)

l with 1 � m � Np and 1 � l � NL, where Np is the number of particles
tracked and NL is the number of Lagrangian force points distributed uniformly over
the surface of each particle (figure 1). The uniform distribution of the Lagrangian
points on the spherical surface of the particles was achieved by using the explicit
spiral set proposed by Saff & Kuijlaars (1997). The spherical coordinates (θk, φk, d/2)
of the Lagrangian points are defined as

θk = arccos(ck), ck = − 1 +
2(k − 1)

(NL − 1)
, 1 � k � NL, (2.10)

φ1 = φNL
=0, φk =

(
φk−1 +

3.6√
NL

1√
1 − c2

k

)
, 1 < k < NL, (2.11)

where h is the width of the uniform Eulerian mesh, and δh represents the three-
dimensional regularized three-point delta function proposed by Roma et al. (1999):

δh

(
x − X (m)

l

)
=

1

h3
δ(r1)δ(r2)δ(r3), (2.12)

where ri = (xi − (Xm
l )i)/h and

δ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3
(1 +

√
1 − 3r2), if |r | � 0.5,

1
6
(5 − 3|r | −

√
1 − 3(1 − |r |)2), if 0.5 � |r | � 1.5,

0, if |r | � 1.5,

(2.13)

for r = r1, r2 or r3. Note that �V
(m)
l is the volume associated with each force point l

of the mth particle:

�V
(m)
l =

πh

3NL

(
12(d/2)2 + h2

)
. (2.14)

The union of all �V
(m)
l volumes for the mth particle forms a thin shell of thickness h

around the particle. The desired velocity, U
(d)
i in (2.8), at the interface between carrier

fluid and particle is computed according to the rigid-body motion of the particle
surface as

U (d)
(

X (m)
l

)
= v(m) + ω(m)

p ×
(

X (m)
l − x(m)

p

)
, (2.15)

where v(m), ω(m)
p and x(m)

p are the translational velocity, rotational velocity and centre
coordinates, respectively, of the mth particle. The algorithm used to compute these
quantities is described in the following subsection.
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(c) The force imparted by the particle is applied by updating u∗
i as

û∗
i = u∗

i + �t fi. (2.16)

(d) The pressure is computed by solving the Poisson equation:

∇2pn+1/2 =
∂j û

∗
j

�t
. (2.17)

(e) The fluid velocity is corrected with the pressure gradient according to

un+1
i = û∗

i − �t ∂ip
n+1/2. (2.18)

The projection method ((2.6), (2.16), (2.17) and (2.18)) is second-order accurate in
space and time for the velocity ui , but first-order accurate in time for the pressure, p

(see Brown, Cortez & Minion 2001). Since the computed pressure is used exclusively
to impose the condition of divergence-free velocity, the presented results are not
affected by the lower-order pressure.

2.2.2. DNS of particle motion

The equations of conservation of linear and angular momenta for a solid particle
moving in an incompressible fluid, derived in the Appendix, are(

ρ(m)
p − ρf

)
V (m)

p u̇(m)
p = −ρf

NL∑
l=1

F
(

X (m)
l

)
�V

(m)
l

+
(
ρ(m)

p − ρf

)
V (m)

p g + F(m)
R , (2.19)

I (m)
p ω̇(m)

p = −ρf

NL∑
l=1

(
X (m)

l − x(m)
p

)
× F

(
X (m)

l

)
�V

(m)
l

+ ρf

d

dt

∫ ∫ ∫
V(m)

[(
x − x(m)

p

)
× u

]
dx, (2.20)

where V (m)
p , I (m)

p and ρ(m)
p are the volume, moment of inertia and density of the mth

particle, respectively, ρf is the density of the carrier fluid and g is the gravitational
acceleration.

In order to avoid the overlapping of particles (or penetration into each other),
we included the repulsive force F(m)

R on the right-hand side of (2.19). This force is
computed as the sum of the short-range repulsive forces between pairs of particles
whose centres are at a distance smaller than d + dR , where d is the particle diameter
(the same for all particles) and dR is a prescribed distance (force range):

F(m)
R =

Np∑
j=1,
j �=m,

F(m,j )
R , (2.21)

The repulsive force between particles m and j , F(m,j )
R , is computed according to

Glowinski et al. (2001) as

F(m,j )
R =

⎧⎪⎨
⎪⎩

0, if d (m,j ) � d + dR,

1

εR

(
d + dR − d (m,j )

dR

)2 (
xm − xj

d (m,j )

)
, if d (m,j ) <d + dR,

(2.22)
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Figure 6. Repulsive force magnitude (dimensionless) versus the normalized distance between
the particles centres, d (m,j )/d in case H.

where d (m,j ) is the distance between the centres of particles m and j , and εR is a
stiffness parameter computed for each case as

εR =
ρp,HV

(m)
p,H

ρpV
(m)
p

εR,H , (2.23)

where subscript H refers to case H (table 3). In our simulations, the two parameters
dR and εR,H were prescribed as dR = 2�x and εR,H = 1.4 × 103. Figure 6 shows the
variation of the magnitude of the repulsive force with the normalized distance between
the particles centres, d (m,j )/d . These values of dR and εR,H were chosen to first minimize
the number of particle–particle overlappings, and then minimize the number of
particles for which F(m)

R is non-zero. For example, in case H (φv = 0.1), the number
of particle–particle overlappings was reduced from about 2 × 102 at t = 5 for the
simulation without repulsive force to zero for the whole simulation with repulsive
force. Also, the repulsive force is non-zero only for about 4 % of the total number
of particles. Furthermore, it should be noted that the temporal development of the
turbulence kinetic energy does not change significantly whether or not the repulsive
force, with the above values of dR and εR , is included.

3. Results and discussion
3.1. Settling sphere validation

In order to validate the numerical method presented in § 2.2, we have simulated the
motion of a settling spherical particle in a quiescent fluid. The physical parameters in
our simulation are set identical to those of the experiments conducted by Mordant &
Pinton (2000). In the experiment, a steel spherical particle (ρ̃f = 7710 kg m−3) of

diameter d̃ = 0.8 mm was released from rest in quiescent water (ν̃ = 0.9 × 10−6 m2 s−1,
ρ̃f = 1000 kg m−3). Under the effect of gravity the sphere reaches its settling velocity
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Ṽt (m s−1) τ̃95 (s)

Present simulation 0.309 106.4 × 10−3

Experiments by Mordant & Pinton (2000) 0.316 108 × 10−3

Table 1. Settling particle velocity Ṽt and particle response time τ̃95. Comparison of the
present DNS with the experiment of Mordant & Pinton (2000).
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Figure 7. Temporal development of normalized vertical velocity Vz/Vt for a single settling
sphere. Comparison of the present DNS with the experiment of Mordant & Pinton (2000).

Ṽt = 0.316 m s−1. The Reynolds number based on particle settling velocity and particle
diameter is Rep = 280.

For this test case the domain is a parallelepiped with dimensionless sides Lx =1,
Ly =1 and Lz = 10. Gravity is oriented in the z direction. The computational mesh is
equispaced in the three directions. The particle has a dimensionless diameter d =0.08.
The particle/fluid density ratio is ρp/ρf = 7.71, and fluid dimensionless kinematic
viscosity is ν = 2.85 × 10−4. Periodic boundary conditions are applied in all three
directions. Because of the imposed periodicity in the z direction, the wake of the
particle could enter from the bottom of the computational domain and interact
directly with the surface of the falling particle. However, the domain is sufficiently
long in the vertical direction (Lz =62.5 d) and the simulation is stopped when the
particle has moved for a length of 25 d such that periodicity in z has negligible effects
on the particle motion.

Figure 7 shows the temporal development of the vertical velocity Vz(t) normalized
by the experimental settling velocity. This figure shows that our numerical solution is
in excellent agreement with the experimental velocity measured by Mordant & Pinton
(2000). The computed final velocity and particle response time τ̃95 (defined as the time
for the particle to reach 95 % of its settling velocity) differ from the experimental
results for less than 1.5 % (table 1).
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t uurms ε � λ η Re� Reλ �/η τ� τλ τk

0.0 0.0503 7.4 × 10−4 0.0684 0.0345 0.00202 150 75 33.8 1.36 0.68 0.177
1.0 0.0436 9.8 × 10−4 0.0685 0.0259 0.00188 129 49 36.4 1.57 0.59 0.154
5.0 0.0233 2.0 × 10−4 0.0891 0.0305 0.00280 90 31 31.9 3.83 1.31 0.338

20.0 0.0097 9.2 × 10−6 0.1407 0.0594 0.00608 58 25 23.1 14.6 6.15 1.588

Table 2. Flow parameters (dimensionless) at initial time (t = 0), injection time (t = 1), and
only for case A at time t = 5 and 20.

3.2. Turbulence and particle properties

The initial velocity field was generated by prescribing the turbulence kinetic energy
spectrum E(k) and ensuring that the initial random velocity field is isotropic,
divergence-free with respect to the discretized form of the continuity equation, and
that the velocity cross-correlation spectra, Rij (k), satisfy the realizability constraints
(Schumann 1977). The initial energy spectrum at time t = 0 was prescribed via

E(k) =

(
3u2

0

2

)(
k

2πk2
p

)
exp

(
− k

kp

)
, (3.1)

where k is the wavenumber, kp is the wavenumber of peak energy, and u0 is the initial
dimensionless root-mean-square (r.m.s.) velocity. In this paper, the wavenumbers are
normalized by the smallest non-zero wave number, kmin = 2π/L, where L is the length
of the computational domain (L = 1). Prescribing the values of kp and u0 determines
E(k) according to (3.1). The dimensionless kinematic viscosity, ν, was computed from
the prescribed initial microscale Reynolds number, Reλ0, and the computed initial
energy dissipation rate, ε(0). The values of the dimensionless parameters at time t =0
were kp = 4, u0 = 0.0503, Reλ0 = 75, ε0 = 7.4 × 10−4 and ν =2.31 × 10−5. Table 2 shows
the dimensionless flow parameters at different times t for the particle-free flow (case
A): l and τl are the integral length- and time scales; Rel is the Reynolds number
based on l; λ is the Taylor microscale; η and τk are the Kolmogorov length- and
time scales. The values of the reference length and time scales used in normalizing
the above quantities were L̃ref =10−2 m and t̃ref =2.33 × 10−3 s, which together with
the dimensionless viscosity ν produce the appropriate value of dimensional kinematic
viscosity of the fluid (liquid water at STP) ν̃ = 10−6 m2 s−1. The accuracy of the
computations of the single-phase flow has been verified via comparison with the
well-known properties of decaying isotropic turbulence, e.g. the asymptotic value of
the skewness of the velocity derivative, the decay rate of TKE, and spectra of TKE
and its dissipation rate. In addition, the smallest scales of turbulence are well resolved
as indicated by η kmax � 1 at all times, where kmax = 2πN/2 is the maximum resolved
wavenumber and N = 256 is the number of grid points in each direction in our
computational grid.

We studied seven cases (B–H) of particle-laden isotropic turbulence to explain how
finite-size particles modify the decay rate of turbulence in zero gravity. The flow
parameters are shown in table 2, and the particle properties are shown in table 3.

Case A represents the particle-free decaying isotropic turbulence. The effects of
varying the particles volume fraction, φv , particle-to-fluid density ratio (or mass
fraction, φm), and particle diameter are studied in the three sets BCD, DEF and
DGH, respectively, while keeping constant the remaining two of the above three
parameters. In cases B, C and D, the volume fraction increases from 0.01 to 0.1 by
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Case d ρp/ρf Np τp τp/τk d/η d/λ φv φm

A – – 0 – – – – 0 0
B 0.031 2.56 640 5.865 38.3 16.4 1.2 0.01 0.026
C 0.031 2.56 3200 5.865 38.3 16.4 1.2 0.05 0.128
D 0.031 2.56 6400 5.865 38.3 16.4 1.2 0.10 0.256
E 0.031 5.00 6400 11.46 74.5 16.4 1.2 0.10 0.500
F 0.031 10.0 6400 22.91 149 16.4 1.2 0.10 1.000
G 0.043 2.56 2304 11.43 74.3 22.9 1.7 0.10 0.256
H 0.067 2.56 640 27.40 178 35.4 2.6 0.10 0.256

Table 3. Particle properties (dimensionless) at injection time (t = 1).

increasing the number of particles. In cases D, E and F, the mass fraction increases
from 0.256 to 1.0 by increasing the particle-to-fluid density ratio from 2.56 (e.g. glass
particles in liquid water) to 10 (e.g. fuel droplets in a Diesel engine combustor). In
cases D, G and H, the particle diameter is increased from 16.4η (or 1.2λ) to 35.4η

(or 2.6λ), where η and λ are the Kolmogorov and Taylor length scales of turbulence,
respectively, at the time of particle injection (t =1). The number of Lagrangian points
that define the surface of each spherical particle is NL = 198 in cases B to F, NL =381
in case G, and NL =925 in case H. There are eight Eulerian grid points per diameter
for cases B to F, 11 in case G and 17 in case H.

Figure 1 shows the pressure distribution and velocity vectors around a typical
spherical solid particle in isotropic turbulence. The black dots represent the
Lagrangian points on the sphere surface where the two-way coupling force is
imparted on the surrounding fluid. We should point out that the average error〈
|Un+1 − U (d)|/|U (d)|

〉
, i.e. the ensemble-averaged normalized difference between the

desired velocity, U (d)(X (m)
l ) defined in (2.15), and the interpolated fluid velocity at the

Lagrangian points, X (m)
l ,

Un+1
i

(
X (m)

l

)
=

∑
x∈D

un+1
i (x) δh

(
x − X (m)

l

)
h3, (3.2)

is about 2 %. The ensemble averaging is performed over all Lagrangian points of all
particles, NLNp . That difference should be identically zero in order to satisfy the no-
slip condition (at the particle surface) in a reference frame moving with the particle.
In this study, the particles translate and rotate freely in the turbulent flow and, thus,
the standard definition of particle Reynolds number Rep = |v − u∞|d/ν cannot be
used because the free-stream fluid velocity u∞ cannot be uniquely defined due to the
disturbances caused by the particle and its neighbouring particles. Therefore, we define
the particle Reynolds number as Rep1 = |v|d/ν. Our results show that, at t = 2.0, Rep1

averaged over all particles, is about 65, for the light particles (case D), and 75, for
the heavier particles (case F). An alternative evaluation of the Reynolds number is
here proposed by computing the velocity difference between the particle translational
velocity, v, and the fluid velocity, ud , at a distance d � λ from the particle surface
along the v direction (figure 8), and averaged over a spherical shell with solid angle
Θ = 2π[1 − cos(π/4)] = 1.84 steradian, ud . With this definition, Rep2 = |v − ud |d/ν

is about 80 and 90 for the light particle (case D) and heavier particle (case F),
respectively (figure 26). The velocity u(r) of figures 26 and 27 is computed as follows:

(a) for each Eulerian point, x, of the computational domain, find the closest
particle;
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0.06 0.08 0.10

X

0.12 0.14

Figure 8. Isocontours of the vorticity normal to the plane and velocity vectors around a
spherical solid particle in isotropic turbulence, the white dots represent the Lagrangian points
on the sphere and the red arrow is the particle velocity vector.

(b) compute the distance from the closest particle surface, r;
(c) include the fluid velocity u(x) in the statistics of u(r) front region of the particle

if (x − xp) · v > 0, or back region if (x − xp) · v < 0.
Note that throughout the text, we denote the flow sub-domain downstream the particle
trajectory as front of the particle and the flow sub-domain upstream the particle
trajectory as back of the particle.

In order to compute the Lagrangian statistics of the turbulent flow for each
simulation, the trajectories of 1.2 × 105 fluid points, released at t =5, are tracked
in time within the three-dimensional computational domain surrounding the solid
particles. The instantaneous Lagrangian velocity of the fluid point, required to
integrate its trajectory, is computed using the fourth-order three-dimensional Hermite
interpolation (Ferrante 2004) from the fluid velocity at the eight Eulerian grid nodes
surrounding the fluid point.

It is important to note that resolving the flow around the moving particles using
the IB method is computationally efficient as compared to other methods. The
simulations, performed on 128 cores of IBM Blue-GeneL, of the single-phase flow
and the particle-laden flow (with 6400 particles each represented by 198 Lagrangian
points, for a total of 1.3 million Lagrangian points; 1.2 × 105 fluid points to compute
the Lagrangian statistics) required 6 and 12 clock hours, respectively, to advance the
solution in time for 10 240 time steps.

3.3. Turbulence modification by particles

In the following subsection we provide an overview of the effects of the particles on
the temporal decay of TKE. In § 3.3.2, we describe in detail the physical mechanisms
by which the different particles modify the dissipation rate, ε(t), and the two-way
coupling rate of change of TKE, Ψp(t), and, in turn, affect the rate of decay of TKE.
The effects of the particles on the frequency spectrum of TKE are discussed in § 3.3.4.
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B C D E F G H

1.2 7.9 16.3 22.7 26.3 14.6 8.6

Table 4. Percentage reduction of TKE relative to case A at t = 8.

3.3.1. Turbulence kinetic energy

Figure 9 shows the temporal development of the TKE normalized by its initial
value, E(t)/E0, for the nine cases (A to H) studied. It is seen that the particles in
all cases B to H increase the decay rate of TKE with respect to that of single-phase
flow (case A) for 1.2 � t � 3. However, as a particle is released in the flow, its surface
displaces and deforms the surrounding fluid, thus resulting in a slight increase in TKE,
relative to case A, as shown in figure 9 for case F with the largest mass fraction,
φm = 1, during 1 � t � 1.2. At later times, t > 3, the TKE of cases B to H stays smaller
than that of case A. The decay rate of TKE increases monotonically by increasing
the particle volume fraction from zero to 0.1 (cases A–D) or decreasing the particle
diameter (cases H, G and D). Increasing the particle-to-fluid density ratio from 2.56
to 10 (cases D–F), all three cases increase the decay rate of TKE, but there is no clear
monotonicity. The decay rate of TKE is increased by increasing the mass fraction
from 0 to 1 (cases A–F). At t = 8, the TKE is 16 % smaller in case D, 13 % in case
E, and 26 % in case F with respect to that in case A. Table 4 shows the percentage
reduction of TKE relative to case A.

It should be noted that the diameter of the particles is one order of magnitude
larger than η, 16 � d/η � 35, and their response time is two orders of magnitude larger
than τk , 38 � τp/τk � 178 (at time t = 1). The decay of TKE is due to the combined
effects of viscous dissipation and two-way coupling:

dE(t)

dt
= −ε(t) + Ψp(t), (3.3)

where ε(t) is the viscous dissipation rate of TKE (figures 10 and 11 to be discussed
below):

ε(t) = 2ν 〈sij sij 〉 , (3.4)

with sij = (∂jui + ∂iuj )/2, the strain-rate tensor. Note that Ψp(t) is the two-way
coupling rate of change of TKE due to the forces exerted by the particle surface on
its surrounding fluid (figure 12)

Ψp(t) = 〈uifi〉 , (3.5)

where 〈. . .〉 denotes ensemble averaging throughout the computational domain outside
the immersed boundaries of the solid particles. Note that Ψp(t) can act as a source
or sink of TKE as was shown by Ferrante & Elghobashi (2003), whereas ε(t), by
definition, is always a sink of TKE.

It should also be noted that since the prescribed density ratio ρp/ρf =2.56, 5.0 and
10, i.e. � 10, all forces acting on the particle become important, in contrast to the case
of large density ratio (∼ 103) for which the drag force predominates. Furthermore, for
finite-size particles with diameter larger than the Kolmogorov length scale, η, all forces
become important, and thus the particle response time is not the only parameter that
determines the particle motion and the two-way coupling effects through the Stokes
number, τp/τk , as is the case for particles with diameter smaller than η. Our DNS
results of cases E and G show that particles with nearly the same inertia (τp/τk � 74)
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Figure 9. Temporal development of the turbulence kinetic energy normalized by its
initial value.
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Figure 10. Temporal development of the viscous dissipation rate of turbulence kinetic
energy normalized by its initial value.
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Figure 11. Viscous dissipation rate of turbulence kinetic energy normalized by its initial
value versus turbulence kinetic energy.
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and same volume fraction (φv =0.1), but different diameters and densities (or mass
fraction), have different effects on E(t), ε(t) and Ψp(t) as shown in figure 13. The
reason is provided in the next subsection.

3.3.2. Dissipation rate of TKE and two-way coupling rate of change of TKE

Figure 10 shows the temporal development of the dissipation rate of TKE, ε(t).
In all particle-laden cases, ε(t) immediately peaks higher than that of case A when
particles are introduced into the flow (t = 1). For example, in case F, ε(t) increases
by about 56 % above case A at t =1. This augmentation of ε(t) increases with mass
fraction from case B to case F. Increasing particle diameter while keeping the same
volume and mass fraction (cases D, G and H) reduces the peak of ε(t) at t =1
and maintains the differences between these three cases at early times after injection
(1 < t < 3), but reverses that trend at later times (t > 3). In all particle-laden cases,
except in case F for t � 20, there is a crossover in their ε(t) with that of case A.
The time of the crossover increases with increasing the mass fraction (figure 10).
The crossover in the ε(t) is due to the decay of TKE (figure 9). In all particle-laden
cases, ε(t) is larger than that of single-phase flow (case A) for any value of TKE as
shown in figure 11. It is seen that ε(E) increases with volume fraction (cases A–D),
particle-to-fluid density ratio (cases A, D, E and F) or mass fraction (cases A–F), and
for decreasing diameter (cases H, G and D; figure 11).

The two-way coupling rate of change of TKE, Ψp(t), is zero for single-phase flow
(fi = 0 → Ψp(t) = 0), and positive in particle-laden cases (figure 12), i.e. Ψp(t) acts
as a source of TKE. The maximum value of Ψp(t) occurs at the time of particle
release in the flow followed by a decay in time as turbulence decays. Note that Ψp(t)
increases with volume fraction, and particle-to-fluid density ratio (or mass fraction),
and its value is about 10 %, 25 % and 50 % of ε(t) in cases D, E and F (figure 14),
respectively. Varying the particle diameter for a fixed volume fraction and mass
fraction does not change Ψp(t) significantly (cases D, G and H in figure 12). However,
the ratio Ψp(t)/ε(t) decreases slightly with increasing the particle diameter (cases D,
G and H) as shown in figure 14. The amplitude of the wiggles of Ψp(t) is larger in
case H because of the effects of the repulsive force (2.22), large particle inertia and
smaller number of particles. As two particles approach each other, a repulsive force,
F(m)

R , is imposed on them to avoid overlapping. The resulting acceleration produces
a force, fi , on the surrounding fluid. In case H, this force is large due to the large
particle inertia, τp/τk = 178, which in turn produces a large Ψp(t). The oscillations
in Ψp(t) are caused by ensemble averaging over a smaller number of particles
(Np = 640) due to a larger particle diameter for a fixed volume fraction. In the next
two subsections, an explanation is provided of how finite-size particles increase the
dissipation rate and generate a positive two-way coupling rate of change of TKE.

Dissipation rate of TKE
The presence of solid particles in the turbulent flow introduces, through the no-slip
condition at the particle surface (Lagrangian points), a local force, fi , on the fluid
surrounding the particle. This force increases the velocity gradients, ∂jui , close to
the particle surface, thus increasing the local strain rate, sij . Figures 15–17 show the
mean square strain rate, sij sij , as a function of the distance, r , from the surface of
the closest particle, for the region in front and back (wake) of the particle in the
sets of cases BCD, DEF and DGH, respectively, at t = 2. The overline ‘. . .’ denotes
instantaneous ensemble average over a subset of Eulerian grid points. The subset
depends on the position of the Eulerian grid point and its closest particle velocity.
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Figure 15. Mean square strain rate, sij sij , versus distance from the closest particle, r , region
in the front of the particle (a) and region in the back of the particle (b) in cases B–D.

The front (or back) of the particle is defined as the sub-domain where (x − xp) · v > 0
(or < 0). In the front of the particle, sij sij at the closest Eulerian points to the particle
surface is few times higher than farther away (r � d).

Figure 15 shows that sij sij does not change significantly with varying the volume
fraction but fixed particle diameter and density ratio in cases B–D. In contrast, sij sij

increases with the particle-to-fluid density ratio for a fixed particle diameter and
volume fraction (cases D–F) as shown in figure 16. For example, consider the closest
point to the particle surface in case F. Compared to sij sij at a distance of one particle
diameter (r = d = 0.03), sij sij is about 4.3 times larger in the front of the particles
and 2 times larger in the back of the particles. Particles with largest diameter (case
H) have higher inertia than smaller particles (case D), τp,H � 4.7τp,D and thus they
induce larger local shear in the fluid surrounding the particle. Thus, increasing the
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Figure 16. Mean square strain rate, sij sij , versus distance from the closest particle, r , region
in the front of the particle (a) and region in the back of the particle (b) in cases D–F.

particle diameter (cases D, G and H) increases sij sij at the nearest point to the front
particle surface (figure 17).

The larger increase of the strain rate in the front rather than in the back of the
particles is due to the fact that, while freely moving, each particle pushes the fluid
forward, whereas in the back of the particle, the fluid is attracted towards the wake
of the particle by the induced pressure gradient. The augmentation of sij sij increases
the magnitudes of the extensional (α) and compressive (γ ) eigenvalues of the velocity
gradient tensor in the flow surrounding the particles relative to single-phase flow.
Figures 18–20 show the eigenvalues α, β and γ , respectively, as function of the
distance, r , from the particle surface. The extensional and compressive eigenvalues,
α and γ , are larger near the particle surface than farther away. This effect is more
pronounced in the front of the particle than in the back. Note that β has smaller

magnitude than α and γ , thus its contribution to sij sij = α2 + β2 + γ 2 is less important
than that of α and γ . Table 5 shows that in case F the mean magnitudes of α and
γ are 17 % and 14 % higher than those of case A at t = 2. Figures 21–23 show that
the probability density functions (p.d.f.s) of α, β and γ exhibit extended tails with
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A B C D E F G H

ωrms 4.28 4.29 4.34 4.31 4.6 4.97 4.36 4.35〈
ω2

〉
18.29 18.37 18.82 18.55 21.2 24.66 19.02 18.91

〈SijSij 〉 7.12 7.18 7.46 7.5 8.6 10.08 7.58 7.45〈
α2 + β2 + γ 2

〉
7.12 7.18 7.46 7.5 8.6 10.08 7.58 7.45

〈α〉 1.55 1.55 1.58 1.58 1.69 1.81 1.59 1.58

〈β〉 0.17 0.16 0.15 0.13 0.14 0.14 0.14 0.15

〈γ 〉 −1.71 −1.71 −1.73 −1.71 −1.82 −1.95 −1.73 −1.73

Table 5. Averaged statistics over the Eulerian grid points of the flow outside the particles at
time t =2 of vorticity, ω, strain rate, sij , and eigenvalues of the velocity gradient tensor, α, β
and γ .

significant magnitudes for all the particle-laden cases than in case A. These p.d.f.s
indicate that the intermittent large magnitude strain rates correspond to the sheared
flow surrounding the moving particles. The fluid elements in front of the freely moving
spherical particles are stretched in the direction tangential to the particle surface and
compressed in the direction normal to the particle surface by the induced velocity
field surrounding the particle surface. Figure 24 shows the increased (red colour)
extensional and compressive eigenvalues, α and γ , to be more pronounced in the
front side of the spheres than in the back. It should be noted that the spherical
particles in figure 24 appear to be of different sizes. This is only because the plane
intersects with the uniform size particles while they are moving in the third direction
(perpendicular to the plane). Figure 25 and the animation (supplementary movie 1
available at journals.cambridge.org/flm) show the instantaneous two-dimensional
contours of sij sij in a sub-region of the computational domain. The TKE dissipation
rate, ε(t), is proportional to 〈sij sij 〉 via (3.4). Thus, ε(t) increases in the particle-laden
cases relative to that in case A as discussed above with a bias in the downstream
direction to their motion (front of the particle). The increase of sij sij in the zone
surrounding the particle reduces the instantaneous TKE relative to that of single-
phase flow (figure 25 and Movie 2). In all cases studied, the particles do not generate
turbulent wakes since the particle Reynolds number is less than 90 in cases B to G,
and smaller than 170 in case H. Thus, particles increase the local shear, close to
their surface in the direction of their motion, and increase the vorticity also in the
back region of the particle but not as intensely as in the front region, as shown by
the two-dimensional (x–z plane) instantaneous contours of ωy vorticity component
(figure 25 and Movie 3).

The effects of particles on TKE, ε and Ψp are more pronounced for larger mass
fraction, φm, of the particles (cases D–F in figures 9, 10 and 12). Figure 26 shows, for
cases D–F, the profiles of the magnitude of the difference between the fluid and the
particle velocity vectors, |u − v|, ensemble averaged for the Eulerian points in front
of the particle, as a function of the distance, r , from the closest particle surface. For
heavier particles (case F, ρp/ρf = 10), the average velocity difference is larger than that
for lighter particles (case D, ρp/ρf = 0.256). Also, figure 27 shows the average scalar
product of the fluid and the particle velocity vectors, u · v/|u||v| = cos(θ), where θ is
the average angle formed between the two velocity vectors. The angle θ measures the
alignment between the particle velocity and the average velocity of its surrounding
fluid. For example, if θ = 0◦, the particle follows the surrounding fluid averaged
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Figure 17. Mean square strain rate, sij sij , versus distance from the closest particle, r , region
in the front of the particle (a) and region in the back of the particle (b) in cases D, G and H.

motion, and if θ = 90◦ the particle crosses perpendicularly the surrounding averaged
fluid velocity. Close to the particle surface, u · v/|u||v| � 1 (i.e. θ =0◦) due to the no-slip
condition at the boundary (figure 27). Particles with larger inertia (τp), cases F and H,
have smaller u · v, i.e. larger deviation angle θ . Figures 26 and 27 show that particle
trajectories in cases F and H deviate more from the motion of the surrounding fluid as
compared with lighter particles. The schematic in figure 28 shows the effect of particle
inertia on the particle and fluid velocity vectors. Particles with higher inertia (τp),
case F, are less dependent on the surrounding fluid motion, thus deviating more from
the surrounding fluid trajectories (figure 26). This larger velocity difference between
the particle and the surrounding fluid induces larger forcing on the surrounding fluid
and increases the local shear rate and dissipation rate of TKE around particles than
particles with smaller τp (case D). In summary, particles in case F induce larger effects
on TKE (ε and Ψp) than particles in case D (figures 9, 10 and 12).

The larger shear and dissipation rates in the front of the particles than those in the
back are manifested in figure 27, which shows that u · v is larger in the back than in
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Figure 21. P.d.f. of α, β and γ , with linear (a,c,e) and log-normal (b,d,f ) scales at t = 2.0 in
cases A–D.

the front of the particle. The velocity of the particle and surrounding fluid are more
aligned in the back than in the front of the particle.

Figure 13 shows that particles with nearly the same inertia (τp � 11 in cases E and
G) and the same volume fraction (φv = 0.1), but different diameters and densities
(or mass fraction), have different effects on E(t), ε(t) and Ψp(t). Smaller and heavier
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Figure 22. P.d.f. of α, β and γ , with linear (a,c,e) and log-normal (b,d,f ) scales at t = 2.0 in
cases A and D–F.

particles (case E) reduce TKE and increase ε(t) and Ψp(t) more than larger and
lighter particles (case G). The larger reduction of TKE is due to the increase in ε(t),
which overcomes the increase of Ψp(t). The increased enhancement of ε(t) is due to
the increase (44 %) of total particle surface immersed in the flow field from case G
to case E.
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Two-way coupling effects on TKE

The question of how finite-size particles induce a positive Ψp(t) is now addressed.
The particles are immersed in an isotropic turbulent flow which exerts surface forces
on the particles. The particles, in turn, impart a reaction surface force, fi , on the
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B C D E F G H

θuf < 90◦ ( %) 42.6 43.1 43.4 44.5 46.2 43.7 44.6

| f |(θuf < 90◦) 0.0768 0.0858 0.0989 0.1220 0.1583 0.0947 0.0910

| f |(θuf > 90◦) 0.0548 0.0631 0.0756 0.0868 0.1079 0.0707 0.0691

|u|(θuf < 90◦) 0.0536 0.0520 0.0511 0.0525 0.0547 0.0502 0.0498

|u|(θuf > 90◦) 0.0547 0.0538 0.0528 0.0539 0.0553 0.0519 0.0507

Table 6. Percentage of Eulerian grid points of the flow outside the particles where θuf < 90◦,

and | f | and |u| for θuf larger or smaller than 90◦.
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Figure 24. Instantaneous contours in x–z plane of α and γ for cases A (a,c) and
F (b,d ) at t = 2.0.

surrounding fluid. Each moving particle drags the surrounding fluid via the local force
fi . Figure 29 shows that the fluid surrounding the particle is subjected to a local force
fi (white arrows). Table 6 shows that in ∼ 45 % of the points where f is not zero,
the angle θuf , between the fluid velocity, u, and forcing vectors, f , is, on the average,
smaller than 90◦. Figure 30 shows that the magnitude of the two-way coupling force,
| f |, ensemble averaged over the Eulerian points where it is finite, decreases with
θuf (0◦ � θuf � 180◦). Accordingly, table 6 shows that the magnitude of f ensemble
averaged for the points where θuf < 90◦ is larger than its value if averaged where
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Figure 25. Instantaneous contours in x–z plane of sij sij , TKE and ωy for cases A (a,c,e) and
F (b,d,f ) at t = 2.0.

θuf > 90◦, and the magnitude of u does not change much for θuf larger or smaller
than 90◦.

The net result of these two opposing effects is that u · f = uifi is preferentially
positive near the particle surface and zero away from the particle where fi = 0,
resulting in Ψp(t), the two-way coupling rate of change of TKE (3.5), being a positive
quantity (figure 12). When u · f is positive, the particles impart a force, on the
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surrounding fluid, in the same direction of the fluid velocity, resulting in a transfer of
energy to the fluid and a positive Ψp(t) (3.5).

Increasing the particle volume fraction (cases B–D) by increasing the number of
particles (from 640 to 6400 with a fixed diameter) in the flow (table 3) increases
the particle surface area affecting the surrounding fluid, thus increasing the two-way
coupling force. Consequently, Ψp(t) increases with volume fraction from case B to
case D as shown in figure 12 (cases B–D). Increasing the particle-to-fluid density ratio
for a fixed volume fraction and particle diameter (cases D–F) increases the forcing
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on the surrounding fluid (figures 27, 31, 30 and table 6). The alignment of u and f
increases with particle-to-fluid density ratio (table 6). Both the increase of | f | with
particle density and the increased alignment of u and f result in an increase of
Ψp(t) = 〈uifi〉 from case D to E to F.

Increasing the particle diameter while fixing the volume fraction and mass fraction
(cases D, G and H) increases the displacement of the surrounding fluid of each
particle, thus increasing the magnitude of the two-way coupling force per particle,
〈| f |〉 /particle, ensemble averaged over the surrounding fluid (figure 31). However,
increasing the particle diameter for a fixed volume fraction, φv , reduces the number
of particles and total surface area. For example, doubling the particle diameter for a
fixed φv reduces the number of particles by a factor of eight and reduces their total
surface area by a factor of two. This reduction of the total contact area between
the particles and the fluid reduces the two-way coupling force (figure 31). The net
impact on Ψp(t) of the above opposing effect (the increase of 〈| f |〉 /particle and the
reduction of the total number of particles) is that Ψp(t) changes only slightly with
increasing the particle diameter for a fixed φv as shown in figure 12 for cases D, G
and H. Consequently, the observed changes in the decay rate of E(t) for cases D, G
and H (figure 9) are mostly due to the modifications of ε(t) for these cases (figure 10),
as discussed earlier, rather than due to the modifications of Ψp(t).

3.3.3. Effects of particle rotation

Our results (figure 32) show that the effects of particle rotation on turbulence
modulation are negligible in comparison to those of particle translation. Figure 32
shows the temporal development of E(t) and its dissipation rate, ε(t), for cases A, D
(table 3) and I. In case I, not reported in table 3, the flow is laden with the same
number and properties of the particles in case D, but in case I the particle rotation is
set to zero, i.e. the particles in case I are only translating. At time t = 2, the percentage
differences between the values of E(t) and ε(t) in cases D and I are only 1.7 % and
0.7 %, respectively.

Particles are released in the flow at t = 1 with zero angular velocity. The turbulent
flow surrounding the particles creates asymmetric shear on the particle surface
resulting in a non-zero angular momentum on the particles (the first term on the
right-hand side of (2.20)). Increasing the volume fraction of particles with the same
moment of inertia, by increasing their number (cases B–D), results in a faster decay
of E(t) (figure 9). This decay results in a reduction of both the magnitude of the
shear rate at the particle surface and the angular momentum (the first term on the
right-hand side of (2.20)). Consequently, the instantaneous (t =2) ensemble-averaged
angular velocity decreases (table 7).

Increasing the particle density while keeping the particle diameter constant (cases
D–F) increases the moment of inertia (table 7) and reduces the angular momentum
(the first term on the right-hand side of (2.20)) because E(t) decays faster (figure 9),
thus from (2.20) the angular velocity decreases (table 7).

Increasing the particle diameter (cases D, G and H), the moment of inertia
increases as d5 (table 7) while the angular momentum (the first term on the right-
hand side of 2.20) increases as d3, thus from (2.20) the angular velocity decreases
(table 7).

3.3.4. Turbulence energy spectrum

Figure 33 shows the instantaneous three-dimensional energy spectra of the
turbulence energy E(k) at time t =5 for cases A, D and E–H. Particles reduce
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Case Ip × 109 ωp

B 3.84 0.87
C 3.84 0.84
D 3.84 0.83
E 7.50 0.63
F 15.0 0.48
G 19.7 0.64
H 181 0.39

Table 7. Particle moment of inertia, Ip =(π/60)ρpd5, and instantaneous ensemble-averaged
particle angular velocity, ωp , at time t = 2.

E(k) at small wavenumber compared to case A, e.g. for 1 � k < 32 in cases D–F.
This reduction is accompanied by an increase of E(k) at larger wavenumbers (for
k > 32 for cases D–F). However, the energy spectra E(k) of the particle-laden cases
show oscillations at k > 32 for cases D–F. These spectra are computed using the fluid
velocity field at all the Eulerian mesh points in the computational domain including
those points that are inside the particles at the time. This means that the fluid motion
inside the particle contributes to the computed spectrum of TKE. The flow field
inside the particle is the result of the correct numerical solution of the Navier–Stokes
equations inside a hollow sphere. Of course, accounting for the fluid velocity inside the
solid particles for computing E(k) has no physical meaning. Moreover, setting the
velocity inside the particle to zero only for computing E(k) does not remove
the oscillations. In order to understand the source of these oscillations, assume
that the fluid velocity inside the particle is uniform. This uniform fluid velocity can
be described by a ‘boxcar’ function (figure 34):

f (x) =

{
1 for |x| � d/2,

0 for |x| > d/2.
(3.6)

The Fourier transform of f (x),

F{f (x)} = F (χ) =
4

χ
sin(χ d/2), (3.7)

is a (sin χ)/χ function of the wavenumber χ . In the discrete Fourier transform (DFT)
domain, χk =2πk/L, where L is the length of the domain and k is the non-dimensional
wavenumber normalized by the minimum χkmin

=2π/L. Thus, the DFT of f (x),

F (k) =
L

πk
sin

(
π k d

L

)
k = 1, . . . , N/2, (3.8)

whose spectrum is characterized by oscillations with a period L/d in the discrete k

space (figure 35). For particle diameter d = 0.031 for cases B–F, L/d = 32.2, which
is in agreement with the oscillations observed in figure 33, where the local minima
of E(k) are at k = 32.2, 64.4 and 96.4. Increasing the particle diameter reduces the
period of the oscillations, L/d . In cases G and F, the period is L/d = 23.2 and 14.9,
respectively, as observed in figure 33. This analysis proves that including the Eulerian
velocity field inside the particles to compute the energy spectrum not only has no
physical meaning but also corrupts the spectrum at all the wavenumbers.

We therefore used an alternative approach to avoid the corruption of wavenumber
spectra by the presence of the particles in the three-dimensional Eulerian velocity field.
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Figure 32. Temporal development of TKE, E(t), and dissipation rate of TKE, ε(t),
in cases A, D and I.

Instead of a wavenumber spectrum, we compute the frequency spectrum of TKE using
a Lagrangian approach. In addition to solving the Navier–Stokes equations (2.1) and
(2.2) coupled with the particle equations of motion (2.19) and (2.20) to obtain the
fluid velocity and track the particles, we compute the trajectories of 1.2 × 105 fluid
points. These points are released at t =5 randomly in the computational domain
outside the spherical particles. The Lagrangian velocity of the fluid points is saved in
time at intervals �fpt = 8�t . In order to compute the frequency spectrum E(ω), we
perform the cosine transform of the velocity autocorrelation

Rii(τ ) = 〈ui(t0)ui(t0 + τ )〉 , (3.9)

E(ωn) =
1

Nt

[
2

Nt −1∑
j=1

(Rii(tj ) cos(ωntj )) + Rii(t0) + (−1)Nt Rii(tNt
)

]
, (3.10)
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Figure 33. Three-dimensional Eulerian spectra computed from the velocity field throughout
the domain, including the velocity field inside the particles at t = 5.
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Figure 34. Schematic representing the similarity between the particle effect on the flow field
and the ‘boxcar’ function.
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Figure 35. Spectrum of the ‘boxcar’ function showing the effect of the flow inside the
particles on the Eulerian energy spectrum.

with frequency

ωn =
πn

Nt�fpt
, (3.11)

where n= 1, . . . , Nt , tj = j�fpt , and Nt is the total number of time steps at which the
Lagrangian velocity of the fluid points is saved. Note that (3.10) is strictly valid for
statistically stationary turbulence. In order to limit the effect of the turbulence decay,
we compute the energy spectrum in the time period from t = 5 to t = 20 during which
Reλ of the single-phase flow decreases from 32 to 25.

The Lagrangian frequency spectra are shown in figure 36 for all cases. The frequency
ω is normalized by the Kolmogorov frequency ωk = π/τk , where τk is the Kolmogorov
time scale at tinj = 1 (table 2). Particles reduce the frequency energy spectrum at low
frequencies compared with that of single-phase flow (case A), i.e. particles decrease the
energy of the large eddies of turbulence. Furthermore, figure 36 shows that particles
(more pronounced in case F) increase the energy of the high frequencies, i.e. particles
are increasing the energy of the small scales. This effect is more pronounced for
heavier particles than that for lighter particles.

The modifications imparted to E(ω) by the particles are now explained. In finite-size
particle-laden turbulence, the large eddy structures lose energy faster, i.e. get slower,
than those in single-phase flow, because they are disrupted by the large-Stokes-number
particles that drag the surrounding fluid in their direction (figure 27 and animation of
TKE and ωy). At the same time, particles generate, in their downstream direction, new
eddies of size d/2 ∼ λ/2 (ωy contours in figure 25 and animation) that become more
frequent in the flow, thus increasing the energy of the high frequencies (figure 36). In



50 F. Lucci, A. Ferrante and S. Elghobashi

A

B

C

D

A

D

E

F

A

D

G

H

E
(ω

)
10–7

10–6

10–5

10–4

10–9

10–2 10–1 100

10–8

(a)

E
(ω

)

10–7

10–6

10–5

10–4

10–9

10–2 10–1 100

10–8

(b)

E
(ω

)

ω/ωk

10–7

10–6

10–5

10–4

10–9

10–2 10–1 100

10–8

(c)

Figure 36. Energy frequency spectra computed with a Lagrangian method computed
releasing the fluid points at t = 5.
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Figure 37. Sketch representing particle interacting with eddies of size integral length, �,
Taylor microscale, λ, and Kolmogorov length, η, for cases B–F.

summary, the particles break the ‘order’ of the large eddies which are less frequent
and create new structures of size d/2 ∼ λ/2, increasing the frequency of small eddies,
thus decreasing the slope of the frequency spectrum (figure 36). This effect is sketched
in figure 37.

4. Concluding remarks
This paper describes a DNS using the immersed boundary method to fully resolve
all the relevant scales of turbulence around freely moving spherical particles of the
Taylor length-scale size, 1.2 � d/λ� 2.6, dispersed in a decaying isotropic turbulent
flow. The notable advantages of the present immersed boundary method are the use
of Cartesian mesh (in contrast to body-fitted mesh) and computational economy.

The particle diameter and Stokes number in terms of Kolmogorov length- and time
scales are 16 � d/η � 35 and 38 � τp/τk � 178 at the time the particles are released
in the flow. The particles mass fraction range is 0.026 � φm � 1.0, corresponding
to a volume fraction of 0.01 � φv � 0.1 and density ratio of 2.56 � ρp/ρf � 10. The
maximum number of dispersed particles is 6400 for φv = 0.1. The main results are as
follows:

(a) Particles with diameter of the order of Taylor’s length-scale always reduce the
TKE, mostly by enhancing its dissipation rate, ε(t). The augmented dissipation rate
exceeds, Ψp(t), the rate of increase of TKE due to the two-way coupling force imparted
by the particles on the surrounding fluid (figure 14). The increased dissipation rate
occurs close to the particle surface, mostly in its front, due to the increased strain rates
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(both extensional and compressive) as the particles move through the surrounding
turbulent eddies (figures 16, 18, 20 and 21).

(b) For fixed volume fraction and diameter of the particles, the most pronounced
effects on TKE, its dissipation rate and its rate of change due to two-way coupling
occur by increasing the ratio ρp/ρf of particle to fluid densities (cases D–F ; figures
9, 10 and 12), which is directly proportional to the Stokes number, (τp/τk), and the
particles mass fraction, φm.

(c) Increasing the particle diameter for fixed volume fraction and mass fraction
(cases D, G and H) slightly reduces the dissipation rate of TKE (figure 10) because
of the reduction of the number of particles and the corresponding total surface area
responsible for inducing shear in the turbulent flow. However, the diameter increase
has only a marginal effect on the two-way coupling rate of change of TKE (figure 12)
due to two opposing effects: the increase of the specific two-way coupling force
(〈| f |〉 /particle) and the reduction of the total number of particles. Thus, the larger
the particle diameter for fixed φv and φm, the smaller the reduction of TKE relative
to that of single-phase flow (figure 9).

(d) Particles with the same inertia, τp , and volume fraction but different diameters
and density ratios (cases E and G) have different effects on TKE, ε(t) and Ψp(t)
(figure 13). Smaller and heavier particles (case E) reduce TKE and increase both ε(t)
and Ψp(t) more than the larger and lighter particles (case G). The larger reduction of
TKE is due to the increase of ε(t). The increase of ε(t) from case G to E is due to
the increase (44 %) of total surface area of the particles.

(e) Computing the spectrum E(k) of turbulence energy including the velocity field
inside the particles is unphysical and produces oscillations (figure 33) at wavenumbers
proportional to L/d , where L is the side length of the computational cubic domain.
In contrast, the frequency spectrum E(ω) (figure 36) is free from oscillations because
it is computed using the Lagrangian velocity autocorrelations of a large number of
fluid points in the flow surrounding the particles.

(f) Comparing the present results with those of our earlier DNS for particles with
d/η < 1 and τp/τk ∼ 1 (Ferrante & Elghobashi 2003), we observe the following:
(i) For particles with d < η, both E(t) and ε(t) may be larger than those of the
single-phase flow for τp/τk < 0.25, or smaller for τp/τk > 0.25. In contrast, for particles
with d > η, as in the present study, E(t) is always smaller than that of the single-phase
flow, case A, while ε(t) is always larger than that of case A after the release of the
particles in the flow and then decreases at later times relative to that of case A.
(ii) The two-way coupling rate of change of TKE, ψp , can be positive or negative for
particles with d <η, while it is always positive for particles with d >η.

Appendix. Equations of conservation of linear and angular momenta for a
solid particle moving in an incompressible fluid

In order to derive the equations of conservation of linear and angular momenta for
a solid spherical particle which is simulated with the immersed-boundary method, we
start with Newton’s second law for the linear and angular motions of a rigid body:

ρpV (m)
p u̇p =

∫ ∫
S

τ · n dS + ρpV (m)
p g, (A 1)

Ip ω̇p =

∫ ∫
S

r × (τ · n) dS, (A 2)

where ρp , Vp and Ip are the density, volume and moment of inertia of the particle;
up and ωp are the linear and angular velocities of the particle; u̇p = dup/dt and
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ω̇p =dωp/dt are the linear and angular accelerations of the particle; τ = −Ip +
μ(∇u + ∇uT) is the stress tensor; n is the unit vector pointing outward normal to the
particle surface S; r = x − xp is the position vector of the particle surface, x, relative
to the particle centre, xp; and g is the gravitational acceleration.

In order to evaluate the first term on the right-hand sides of (A 1) and (A 2), we
invoke the principle of conservation of linear and angular momenta, i.e. the rate of
change of linear (angular) momentum of a volume of fluid V equals the sum of total
internal and external forces exerted on V (Aris 1962, p. 100):

d

dt

∫ ∫ ∫
V

ρf u dV =

∫ ∫
S

τ · n dS +

∫ ∫ ∫
V

ρf f dV +

∫ ∫ ∫
V

ρf g dV, (A 3)

d

dt

∫ ∫ ∫
V

ρf (r × u) dV =

∫ ∫
S

r × (τ · n) dS +

∫ ∫ ∫
V

ρf (r × f ) dV, (A 4)

where ρf is the fluid density, and f and g (gravity) are the external forces per unit
mass exerted on the volume V. In the case of a solid particle immersed in a fluid,
f is the force per unit mass exerted by the particle on the fluid. For a sphere that
satisfies the rigid-body motion immersed in an incompressible fluid, Uhlmann (2003)
has shown that

d

dt

∫ ∫ ∫
V

u dV = Vp u̇p, (A 5)

independently from the actual u inside the volume V. An analogous simplification
for the left-hand side of (A 4) holds in the case of rigid-body motion throughout the
volume V:

u(x) = up + ωp × r(x), x ∈ V ⇒ d

dt

∫ ∫ ∫
V

(r × u) dV =
Ip

ρp

ω̇p. (A 6)

However, in this study the Lagrangian points are distributed only at the particle
surface, and the interior of the particle is not forced to be in rigid-body motion,
thus (A 6) does not hold, and the left-hand side of (A 4) (the last term in (A 14)) is
computed numerically.

Using (A 3)–(A 5), Newton’s second law (A 1) and (A 2) can be written as

(ρp − ρf )Vp u̇p = −ρf

∫ ∫ ∫
V

f dV + (ρp − ρf )Vp g, (A 7)

Ip ω̇p = −ρf

∫ ∫ ∫
V

(r × f ) dV +
d

dt

∫ ∫ ∫
V

ρf (r × u) dV. (A 8)

The volume integral of the first term on the right-hand side of (A 7) and (A 8) can
be computed as follows. Using the properties of the delta function (2.12)–(2.13), δh,
adopted in the immersed-boundary method (§ 2.2.1), it can be shown that the total
amount of forces (and torques) imparted at the Eulerian grid points surrounding the
particle equals the sum of forces (and torques) at the Lagrangian points distributed
over the sphere surface (Uhlmann 2005):

∑
x∈D

f (x)h3 =

Np∑
m=1

NL∑
l=1

F
(

X (m)
l

)
�V

(m)
l , (A 9)

∑
x∈D

x × f (x)h3 =

Np∑
m=1

NL∑
l=1

X (m)
l × F

(
X (m)

l

)
�V

(m)
l . (A 10)
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The integrals over the particle volume V in (A 1) and (A 2) can be written as

∫ ∫ ∫
V

f dV =
∑
x∈V

f (x)h3 =

NL∑
l=1

F
(

X (m)
l

)
�V

(m)
l , (A 11)

∫ ∫ ∫
V

(r × f ) dV =
∑
x∈V

r × f (x)h3 =

NL∑
l=1

(
X (m)

l − x(m)
p

)
× F

(
X (m)

l

)
�V

(m)
l . (A 12)

Substituting (A 11) and (A 12) in (A 7) and (A 8) gives the linear and angular momenta
equations for the mth particle

(
ρ(m)

p − ρf

)
V (m)

p u̇(m)
p = −ρf

NL∑
l=1

F
(

X (m)
l

)
�V

(m)
l +

(
ρ(m)

p − ρf

)
V (m)

p g, (A 13)

I (m)
p ω̇(m)

p = −ρf

NL∑
l=1

(
X (m)

l − x(m)
p

)
× F(X (m)

l )�V
(m)
l

+ ρf

d

dt

∫ ∫ ∫
V(m)

[(
x − x(m)

p

)
× u

]
dx. (A 14)
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